您的位置:首页 > 策划书

初二年级的数学知识点总结(初二数学哪些知识点比较难)

发布时间:2024-09-24 15:35:43  来源:互联网     背景:

总结就是把一个时段的学习、工作或其完成情况进行一次全面系统的总结,写总结有利于我们学习和工作能力的提高,因此好好准备一份总结吧。我们该怎么去写总结呢?下面是小编收集整理的,希望对大家有所帮助。

篇1

1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

工业企业原材料采购合同通用版

3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。

5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

8、多边形的内角:多边形相邻两边组成的角叫做它的内角。

9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。

12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。

13、公式与性质:

「1」三角形的内角和:三角形的内角和为180°

「2」三角形外角的性质:

性质1:三角形的一个外角等于和它不相邻的两个内角的和。

性质2:三角形的一个外角大于任何一个和它不相邻的内角。

「3」多边形内角和公式:边形的内角和等于?180°

「4」多边形的外角和:多边形的外角和为360°

「5」多边形对角线的条数:

①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形。

②边形共有条对角线。

篇2

第一章勾股定理

1、探索勾股定理

①勾股定理:直角三角形两直角边的平方和等于斜边的平方,如果用a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c2

2、一定是直角三角形吗

①如果三角形的三边长a b c满足a2+b2=c2,那么这个三角形一定是直角三角形

3、勾股定理的应用

第二章实数

1、认识无理数

①有理数:总是可以用有限小数和无限循环小数表示

②无理数:无限不循环小数

2、平方根

①算数平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算数平方根

②特别地,我们规定:0的算数平方根是0

③平方根:一般地,如果一个数x的平方等于a,即x2=a。那么这个数x就叫做a的平方根,也叫做二次方根

④一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根

⑤正数有两个平方根,一个是a的算数平方,另一个是—,它们互为相反数,这两个平方根合起来可记作±

⑥开平方:求一个数a的平方根的运算叫做开平方,a叫做被开方数

3、立方根

①立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根,也叫三次方根

②每个数都有一个立方根,正数的立方根是正数;0立方根是0;负数的立方根是负数。

③开立方:求一个数a的立方根的运算叫做开立方,a叫做被开方数

4、估算

①估算,一般结果是相对复杂的小数,估算有精确位数

5、用计算机开平方

6、实数

①实数:有理数和无理数的统称

②实数也可以分为正实数、0、负实数

③每一个实数都可以在数轴上表示,数轴上每一个点都对应一个实数,在数轴上,右边的点永远比左边的点表示的数大

7、二次根式

①含义:一般地,形如(a≥0)的式子叫做二次根式,a叫做被开方数

② =(a≥0,b≥0),=(a≥0,b>0)

③最简二次根式:一般地,被开方数不含分母,也不含能开的尽方的因数或因式,这样的二次根式,叫做最简二次根式

④化简时,通常要求最终结果中分母不含有根号,而且各个二次根式时最简二次根式

第三章位置与坐标

1、确定位置

①在平面内,确定一个物体的位置一般需要两个数据

2、平面直角坐标系

①含义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系

②通常地,两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做x轴或者横轴,竖直的数轴叫y轴和纵轴,二者统称为坐标轴,它们的公共原点o被称为直角坐标系的原点

③建立了平面直角坐标系,平面内的点就可以用一组有序实数对来表示

④在平面直角坐标系中,两条坐标轴将坐标平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆时针方向叫做第二象限,第三象限,第四象限,坐标轴上的点不在任何一个象限

⑤在直角坐标系中,对于平面上任意一点,都有唯一的一个有序实数对(即点的坐标)与它对应;反过来,对于任意一个有序实数对,都有平面上唯一的一点与它对应

3、轴对称与坐标变化

①关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数

第四章一次函数

1、函数

①一般地,如果在一个变化过程中有两个变量x和y,并且对于变量x的每一个值,变量y都有唯一的值与它对应,那么我们称y是x的函数其中x是自变量

②表示函数的方法一般有:列表法、关系式法和图象法

③对于自变量在可取值范围内的一个确定的值a,函数有唯一确定的对应值,这个对应值称为当自变量等于a的函数值

2、一次函数与正比例函数

①若两个变量x,y间的对应关系可以表示成y=kx+b(k、b为常数,k≠0)的形式,则称y是x的一次函数,特别的,当b=0时,称y是x的正比例函数

3、一次函数的图像

①正比例函数y=kx的图像是一条经过原点(0,0)的直线。因此,画正比例函数图像是,只要再确定一点,过这个点与原点画直线就可以了

②在正比例函数y=kx中,当k>0时,y的值随着x值的增大而减小;当k<0时,y的值随着x的值增大而减小

③一次函数y=kx+b的图像是一条直线,因此画一次函数图像时,只要确定两个点,再过这两点画直线就可以了。一次函数y=kx+b的图像也称为直线y=kx+b

④一次函数y=kx+b的图像经过点(0,b)。当k>0时,y的值随着x值的增大而增大;当k<0时,y的值随着x值的增大而减小

4、一次函数的应用

①一般地,当一次函数y=kx+b的函数值为0时,相应的自变量的值就是方程kx+b=0的解,从图像上看,一次函数y=kx+b的图像与x轴交点的横坐标就是方程kx+b=0

第五章二元一次方程组

1、认识二元一次方程组

①含有两个未知数,并且所含有未知数的项的次数都是1的方程叫做二元一次方程

②共含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组

③二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解

2、求解二元一次方程组

①将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代入另个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代入消元法,简称代入法

②通过两式子加减,消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法

3、应用二元一次方程组

①鸡兔同笼

4、应用二元一次方程组

①增减收支

5、应用二元一次方程组

①里程碑上的数

6、二元一次方程组与一次函数

①一般地,以一个二元一次方程的解为坐标的点组成的图像与相应的一次函数的图像相同,是一条直线

②一般地,从图形的角度看,确定两条直线相交点的坐标,相当于求相应的二元一次方程组的解,解一个二元一次方程组相当于确定相应两条直线交点的坐标

7、用二元一次方程组确定一次函数表达式

①先设出函数表达式,再根据所给条件确定表达式中未知的系数,从而得到函数表达式的方法,叫做待定系数法。

8、三元一次方程组

①在一个方程组中,各个式子都含有三个未知数,并且所含有未知数的项的次数都是1,这样的方程叫做三元一次方程

②像这样,共含有三个未知数的三个一次方程所组成的一组方程,叫做三元一次方程组

③三元一次方程组中各个方程的公共解,叫做这个三元一次方程组的解。

第六章数据的分析

1、平均数

①一般地,对于n个数x1x2.....xn,我们把(x1+x2+···+xn)叫做这n个数的算数平均数,简称平均数记为。

北师版初二数学上册知识点

②在实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而在计算,这组数据的平均数时,往往给每个数据一个权,叫做加权平均数

2、中位数与众数

①中位数:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数

②一组数据中出现次数最多的那个数据叫做这组数据的众数

③平均数、中位数和众数都是描述数据集中趋势的统计量

④计算平均数时,所有数据都参加运算,它能充分地利用数据所提供的信息,因此在现实生活中较为常用,但他容易受极端值影响。

⑤中位数的优点是计算简单,受极端值影响较小,但不能充分利用所有数据的信息

⑥各个数据重复次数大致相等时,众数往往没有特别意义

3、从统计图分析数据的集中趋势

4、数据的离散程度

①实际生活中,除了关心数据的集中趋势外,人们还关注数据的离散程度,即它们相对于集中趋势的偏离情况。一组数据中最大数据与最小数据的差,(称为极差),就是刻画数据离散程度的一个统计量

②数学上,数据的离散程度还可以用方差或标准差刻画

③方差是各个数据与平均数差的平方的平均数

④其中是x1x2......xn平均数,s2是方差,而标准差就是方差的算术平方根

⑤一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定。

第七章平行线的证明

1、为什么要证明

①实验、观察、归纳得到的结论可能正确,也可能不正确,因此,要判断一个数学结论是否正确,仅仅依靠实验、观察、归纳是不够的,必须进行有根有据的证明

2、定义与命题

①证明时,为了交流方便,必须对某些名称和术语形成共同的认识,为此,就要对名称和术语的含义加以描述,做出明确的规定,也就是给它们的定义

②判断一件事情的句子,叫做命题

③一般地,每个命题都由条件和结论两部分组成。条件是已知的选项,结论是已知选项推出的事项。命题通常可以写成“如果....那么....”的形式,其中“如果”引出的部分是条件,“那么”引出的部分是结论

④正确的命题称为真命题,不正确的命题称为假命题

⑤要说明一个命题是假命题,常常可以举出一个例子,使它具备命题的条件,而不具有命题的结论,这种例子称为反例

⑥欧几里得在编写《原本》时,挑选了一部分数学名词和一部分公认的真命题作为证实其他命题的出发点和依据。其中数学名词称为原名,公认的真命题称为公理,除了公理外,其他命题的真假都需要通过演绎推理的方法进行判断

⑦演绎推理的过程称为证明,经过证明的真命题称为定理,每个定理都只能用公理、定义和已经证明为真的命题来证明

a.本套教科书选用九条基本事实作为证明的出发点和依据,其中八条是:两点确定一条直线

b.两点之间线段最短

c.同一平面内,过一点有且只有一条直线与已知直线垂直

d.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行(简述为:同位角相等,两直线平行)

e.过直线外一点有且只有一条直线与这条直线平行

f.两边及其夹角分别相等的两个三角形全等

g.两角及其夹边分别相等的两个三角形全等

h.三边分别相等的两个三角形全等

⑧此外,数与式的运算律和运算法则、等式的有关性质,以及反映大小关系的有关性质都可以作为证明的依据

⑨ 定理:同角(等角)的补角相等

同角(等角)的余角相等

三角形的任意两边之和大于第三边

对顶角相等

3、平行线的判定

① 定理:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,简述为:内错角相等,两直线平行

② 定理:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行,简述为:同旁内角互补,两直线平行。

4、平行线的性质

① 定理:两条平行直线被第三条直线所截,同位角相等。简述为:两直线平行,同位角相等

② 定理:两条平行直线被第三条直线所截,内错角相等。简述为:两直线平行,内错角相等

③ 定理:两条平行直线被第三条直线所截,同旁内角互补。简述为:两直线平行,同旁内角互补

④ 定理:平行于同一条直线的两条直线平行

5、三角形内角和定理

① 三角形内角和定理:三角形的内角和等于180°

② 定理:三角形的一个外角等于和它不相邻的两个内角的和

定理:三角形的一个外角大于任何一个和它不相邻的内角

③ 我们通过三角形的内角和定理直接推导出两个新定理。像这样,由一个基本事实或定理直接推出的定理,叫做这个基本事实或定理的推论,推论可以当定理使用。

初二数学上册知识点汇总

(一)运用公式法:

我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:

a2—b2=(a+b)(a—b)

a2+2ab+b2=(a+b)2

a2—2ab+b2=(a—b)2

如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。

(二)平方差公式

1.平方差公式

(1)式子: a2—b2=(a+b)(a—b)

(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。

(三)因式分解

1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。

2.因式分解,必须进行到每一个多项式因式不能再分解为止。

(四)完全平方公式

(1)把乘法公式(a+b)2=a2+2ab+b2 和 (a—b)2=a2—2ab+b2反过来,就可以得到:

土地承包合同承包形式

a2+2ab+b2 =(a+b)2

a2—2ab+b2 =(a—b)2

这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

把a2+2ab+b2和a2—2ab+b2这样的式子叫完全平方式。

上面两个公式叫完全平方公式。

(2)完全平方式的形式和特点

①项数:三项

②有两项是两个数的的平方和,这两项的符号相同。

③有一项是这两个数的积的两倍。

(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。

(4)完全平方公式中的`a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。

(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。

(五)分组分解法

我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式。

如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式。

原式=(am +an)+(bm+ bn)

=a(m+ n)+b(m +n)

做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义。但不难看出这两项还有公因式(m+n),因此还能继续分解,所以

原式=(am +an)+(bm+ bn)

=a(m+ n)+b(m+ n)

=(m +n)×(a +b)。

这种利用分组来分解因式的方法叫做分组分解法。从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式。

(六)提公因式法

1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式。当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式。

2. 运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:

1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数。

2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:

① 列出常数项分解成两个因数的积各种可能情况;

②尝试其中的哪两个因数的和恰好等于一次项系数。

3.将原多项式分解成(x+q)(x+p)的形式。

(七)分式的乘除法

1.把一个分式的分子与分母的公因式约去,叫做分式的约分。

2.分式进行约分的目的是要把这个分式化为最简分式。

3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式。如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分。

4.分式约分中注意正确运用乘方的符号法则,如x—y=—(y—x),(x—y)2=(y—x)2,(x—y)3=—(y—x)3。

5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按—1的偶次方为正、奇次方为负来处理。当然,简单的分式之分子分母可直接乘方。

6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减。

(八)分数的加减法

1.通分与约分虽都是针对分式而言,但却是两种相反的变形。约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来。

2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变。

3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备。

4.通分的依据:分式的基本性质。

5.通分的关键:确定几个分式的公分母。

通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。

6.类比分数的通分得到分式的通分:

把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。

7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。

同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。

8.异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减。

9.同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号。

10.对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分。

11.异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化。

12.作为最后结果,如果是分式则应该是最简分式。

(九)含有字母系数的一元一次方程

1.含有字母系数的一元一次方程

引例:一数的a倍(a≠0)等于b,求这个数。用x表示这个数,根据题意,可得方程 ax=b(a≠0)

在这个方程中,x是未知数,a和b是用字母表示的已知数。对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字母系数的一元一次方程。

含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法相同,但必须特别注意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零

篇3

一、勾股定理

1、勾股定理

直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2。

2、勾股定理的逆定理

如果三角形的三边长a,b,c有这种关系,那么这个三角形是直角三角形。

3、勾股数

满足的三个正整数,称为勾股数。

常见的勾股数组有:「3,4,5」;「5,12,13」;「8,15,17」;「7,24,25」;「20,21,29」;「9,40,41」;……「这些勾股数组的倍数仍是勾股数」。

二、证明

1、对事情作出判断的句子,就叫做命题。即:命题是判断一件事情的句子。

2、三角形内角和定理:三角形三个内角的和等于180度。

「1」证明三角形内角和定理的思路是将原三角形中的三个角凑到一起组成一个平角。一般需要作辅助。

「2」三角形的外角与它相邻的内角是互为补角。

3、三角形的外角与它不相邻的内角关系

「1」三角形的一个外角等于和它不相邻的两个内角的和。

「2」三角形的一个外角大于任何一个和它不相邻的内角。

4、证明一个命题是真命题的基本步骤

「1」根据题意,画出图形。

「2」根据条件、结论,结合图形,写出已知、求证。

「3」经过分析,找出由已知推出求证的途径,写出证明过程。在证明时需注意:①在一般情况下,分析的过程不要求写出来。②证明中的每一步推理都要有根据。如果两条直线都和第三条直线平行,那么这两条直线也相互平行。

篇4

第二章 分解因式

一. 分解因式

※1. 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.

※2. 因式分解与整式乘法是互逆关系.

因式分解与整式乘法的区别和联系:

「1」整式乘法是把几个整式相乘,化为一个多项式;

「2」因式分解是把一个多项式化为几个因式相乘.

二. 提公共因式法

※1. 如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法.

※2. 概念内涵:

「1」因式分解的最后结果应当是积

「2」公因式可能是单项式,也可能是多项式;

「3」提公因式法的理论依据是乘法对加法的分配律,ab +ac=a「b+c」

「1」注意项的符号与幂指数是否搞错;

「2」公因式是否提彻底;

「3」多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉.

三. 运用公式法

※1. 如果把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的方法叫做运用公式法.

※2. 主要公式:

「1」平方差公式:

①应是二项式或视作二项式的多项式;

②二项式的每项「不含符号」都是一个单项式「或多项式」的平方;

③二项是异号.

「2」完全平方公式:

①应是三项式;

②其中两项同号,且各为一整式的平方;

③还有一项可正负,且它是前两项幂的底数乘积的2倍.

※5. 因式分解的思路与解题步骤:

「1」先看各项有没有公因式,若有,则先提取公因式;

「2」再看能否使用公式法;

「3」因式分解的最后结果必须是几个整式的乘积;

「4」因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.

四. 一元一次不等式:

※1. 只含有一个未知数,且含未知数的式子是整式,未知数的次数是1. 像这样的不等式叫做一元一次不等式.

※2. 解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向.

※3. 解一元一次不等式的步骤:

①去分母;

②去括号;

③移项;

④合并同类项;

⑤系数化为1「注意不等号方向改变的问题」

※4. 不等式应用的探索「利用不等式解决实际问题」

列不等式解应用题基本步骤与列方程解应用题相类似,即:

①审:认真审题,找出题中的不等关系,要抓住题中的关键字眼,如大于、小于、不大于、不小于等含义;

②设:设出适当的未知数;

③列:根据题中的不等关系,列出不等式;

④解:解出所列的不等式的解集;

⑤答:写出答案,并检验答案是否符合题意.

五. 一元一次不等式与一次函数

六. 一元一次不等式组

※1. 定义:由含有一个相同未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组.

※2. 一元一次不等式组中各个不等式解集的公共部分叫做不等式组的解集.

如果这些不等式的解集无公共部分,就说这个不等式组无解.

几个不等式解集的公共部分,通常是利用数轴来确定.

※3. 解一元一次不等式组的步骤:

「1」分别求出不等式组中各个不等式的解集;

「2」利用数轴求出这些解集的公共部分,

「3」写出这个不等式组的解集.

两个一元一次不等式组的解集的四种情况「a、b为实数,且a

「同大取大;同小取小;大小小大中间找;大大小小无解」

篇5

62定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

63逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

64等腰梯形性质定理等腰梯形在同一底上的两个角相等

65等腰梯形的两条对角线相等

66等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形

67对角线相等的梯形是等腰梯形

68平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

69推论1经过梯形一腰的中点与底平行的直线,必平分另一腰

70推论2经过三角形一边的中点与另一边平行的直线,必平分第三边

71三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半

72梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=「a+b」÷2S=L×h

篇6

①线段有两条对称轴,是这条线段的垂直平分线和线段所在的直线。

②角有一条对称轴,是角平分线所在的直线。

③等腰三角形有一条对称轴,是顶角平分线所在的直线。

④等边三角形有三条对称轴,分别是三个顶角平分线所在的直线。

⑤矩形有两条对称轴,是相邻两边的垂直平分线。

⑥正方形有四条对称轴,是相邻两边的垂直平分线和对角线所在的直线。

⑦菱形有两条对称轴,是对角线所在的直线。

⑧等腰梯形有一条对称轴,是两底垂直平分线。

⑨正多边形有与边数相同条的对称轴。

⑩圆有无数条对称轴,是任何一条直径所在的直线。

篇7

一、 每周干家务活的时间

※1、所要考察的对象的全体叫做总体;

把组成总体的每一个考察对象叫做个体;

从总体中取出的一部分个体叫做这个总体的一个样本.

※2、为一特定目的而对所有考察对象作的全面调查叫做普查;

为一特定目的而对部分考察对象作的调查叫做抽样调查.

二、数据的收集

※1、抽样调查的特点: 调查的范围小、节省时间和人力物力优点.但不如普查得到的调查结果精确,它得到的只是估计值.

而估计值是否接近实际情况还取决于样本选得是否有代表性.

第六章 证明「一」

二、 定义与命题

※1、 一般地,能明确指出概念含义或特征的句子,称为定义.

定义必须是严密的.一般避免使用含糊不清的术语,例如"一些"、"大概"、"差不多"等不能在定义中出现.

※2、可以判断它是正确的或是错误的句子叫做命题.

正确的命题称为真命题,错误的命题称为假命题.

※3、 数学中有些命题的正确性是人们在长期实践中总结出来的,并且把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理.

※4、有些命题可以从公理或其他真命题出发,用逻辑推理的方法判断它们是正确的,并且可以进一步作为判断其他命题真假的依据,这样的真命题叫做定理.

5、根据题设、定义以及公理、定理等,经过逻辑推理,来判断一个命题是否正确,这样的推理过程叫做证明.

三. 为什么它们平行

※1、平行判定公理: 同位角相等,两直线平行.「并由此得到平行的判定定理」

※2、平行判定定理: 同旁内互补,两直线平行.

※3、平行判定定理: 同错角相等,两直线平行.

四、如果两条直线平行

※1. 两条直线平行的性质公理: 两直线平行,同位角相等;

※2. 两条直线平行的性质定理: 两直线平行,内错角相等;

※3. 两条直线平行的性质定理: 两直线平行,同旁内角互补.

五、三角形和定理的证明

※1. 三角形内角和定理: 三角形三个内角的和等于180°

2. 一个三角形中至多只有一个直角

3. 一个三角形中至多只有一个钝角

4. 一个三角形中至少有两个锐角

六、关注三角形的外角

※1. 三角形内角和定理的两个推论:

推论1: 三角形的一个外角等于和它不相邻的两个内角的和;

推论2: 三角形的一个外角大于任何一个和它不相邻的内角.

篇8

一. 分式

※1. 两个整数不能整除时,出现了分数;类似地,当两个整式不能整除时,就出现了分式.

整式A除以整式B,可以表示成 的形式.如果除式B中含有字母,那么称 为分式,对于任意一个分式,分母都不能为零.

※2. 进行分数的化简与运算时,常要进行约分和通分,其主要依据是分数的基本性质:

分式的分子与分母都乘以「或除以」同一个不等于零的整式,分式的值不变.

※3. 一个分式的分子、分母有公因式时,可以运用分式的基本性质,把这个分式的分子、分母同时除以它的们的公因式,也就是把分子、分母的公因式约去,这叫做约分.

※4. 分子与分母没有公因式的分式,叫做最简分式.

二. 分式的乘除法法则

两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘「简记为:除以一个数等于乘以这个数的倒数」

三. 分式的加减法

※1. 分式与分数类似,也可以通分.

根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.

※2. 分式的加减法:

分式的加减法与分数的加减法一样,分为同分母的分式相加减与异分母的分式相加减.

「1」同分母的分式相加减,分母不变,把分子相加减;

「2」异号分母的分式相加减,先通分,变为同分母的分式,然后再加减;

※3. 概念内涵:

通分的关键是确定最简分母,其方法如下:

「1」最简公分母的系数,取各分母系数的最小公倍数;

「2」最简公分母的字母,取各分母所有字母的最高次幂的积,

「3」如果分母是多项式,则首先对多项式进行因式分解.

四. 分式方程

※1. 解分式方程的一般步骤:

①在方程的两边都乘以最简公分母,约去分母,化成整式方程;

②解这个整式方程;

③把整式方程的根代入原方程检验.

※2. 列分式方程解应用题的一般步骤:

①审清题意;

②设未知数;

③根据题意找相等关系,列出「分式」方程;

④解方程,并验根;

⑤写出答案.

初二年级的数学知识点总结 篇9

一」运用公式法:

我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:a2-b2=「a+b」「a-b」

a2+2ab+b2=「a+b」2

a2-2ab+b2=「a-b」2

如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。

「二」平方差公式

1.平方差公式

「1」式子:a2-b2=「a+b」「a-b」

「2」语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。

「三」因式分解

1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。

2.因式分解,必须进行到每一个多项式因式不能再分解为止。

初二年级的数学知识点总结 篇10

1推论1等腰三角形顶角的平分线平分底边并且垂直于底边

2等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

3推论3等边三角形的各角都相等,并且每一个角都等于60°

4等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等「等角对等边」

5推论1三个角都相等的三角形是等边三角形

6推论2有一个角等于60°的等腰三角形是等边三角形

7在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

8直角三角形斜边上的中线等于斜边上的一半

9定理线段垂直平分线上的点和这条线段两个端点的距离相等

10逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上


返回网站首页

本文评论
小学圣诞节的活动主题策划方案_公司圣诞节活动策划方案
为了确保活动扎实开展,往往需要预先进行活动方案制定工作,活动方案其实就是针对活动相关的因素所制定的书面计划。写活动方案需要注意哪些格式呢?以下是小编收集整理的,欢迎大家...
日期:08-02
幼儿园春季班务工作计划_幼儿园春季班务计划表
人生天地之间,若白驹过隙,忽然而已,相信大家对即将到来的工作生活满心期待吧!是时候写一份详细的工作计划了。是不是无从下笔、没有头绪?以下是小编整理的(精选40篇),欢迎阅读与收...
日期:08-04
施工安全承诺书_施工安全承诺书
范文(精选7篇)在现在的社会生活中,承诺书在我们的视野里出现的频率越来越高,承诺书必须由受要约人作出,只有受要约人才能取得承诺的权利,受要约人以外的第三人不享有承诺的权利。...
日期:09-23
公司读书分享会策划书_读书活动策划书
范文随着读书节成为现代文明的形态之一,丰富多彩的读书节活动不仅能刺激人们积极阅读,而且成为一种生 活方式。下面是关于读书活动策划书范文的内容,欢迎阅读!一、活动主题:美文...
日期:08-22
珠宝营销规划_珠宝营销策划方案范文
方案的中文含义方案是计划中内容最为复杂的一种。由于一些具有某种职能的具体工作比较复杂,不作全面部署不足以说明问题,因而公文内容构成势必要繁琐一些,一般有指导思想、主...
日期:08-16
小学教学计划表_小学教学计划
【精华】锦集六篇光阴的迅速,一眨眼就过去了,我们又将学习新的知识,有新的感受,写一份教学计划,为接下来的工作做准备吧!教学计划怎么写才能切实地帮助到自己将来的工作呢?以下是小...
日期:08-10
创业大赛的策划书(创业策划书怎么写)
「15篇」伴着时间的流逝,辛苦的工作已经告一段落,我们的工作又迎来了一个新层面,当然也要定下新目标,这时候,最关键的策划书怎么能落下!策划书要写哪些内容呢?下面是小编收集整理的...
日期:07-27
社会实践报告实践心得_暑期社会实践实践心得分享
暑期社会实践实践心得分享轮扣式脚手架承包合同拨款请示怎么写第一次参加暑期社会实践,对于我的成长来说是一个全新的体验,它让我的视野更加开阔,在磨砺中变得更加成熟,暑期社会...
日期:09-14
教师节主题活动的开展_教师节主题活动方案
(通用11篇)为了确保活动能有条不紊地开展,时常需要预先制定一份周密的活动方案,活动方案是综合考量活动相关的因素后所制定的书面计划。我们该怎么去写活动方案呢?以下是小编收集...
日期:07-29
学雷锋志愿者活动总结(学雷锋讲故事比赛总结)
三篇志愿者精神意指一种互助、不求回报的精神,它提倡“互相帮助、助人自助、无私奉献、不求回报”。志愿者凭借自己的双手、头脑、知识、爱心开展各种志愿服务活动,无偿帮助那...
日期:07-27
大学护理教学年度工作总结(护理实习教学工作总结)
总结是把一定阶段内的有关情况分析研究,做出有指导性的经验方法以及结论的书面材料,它可以提升我们发现问题的能力,因此十分有必须要写一份总结哦。总结一般是怎么写的呢?下面是...
日期:08-08
小学英语教研组的工作计划_2022年英语教研组计划
小学英语教研组的工作计划范文一、指导思想与思路以学校总体工作为依据,以科学发展观为指导,以深入推进素质教育、提高教育教学质量为核心,以新理念、新课程、新技术为主要内容...
日期:08-06
酒店餐饮部承包策划书(酒店餐饮部承包合同书)
酒店餐饮部承包策划书范本位于**火车站的**大酒店现经发展需要,其中餐饮部将以个人承包方式经营。下面是对此项项目的想法。**大酒店位于**火车站西部,独特的地理环境使它具有...
日期:09-15
初中英语教学说课稿_教学说课稿
(精选25篇)在教学工作者实际的教学活动中,编写说课稿是必不可少的,借助说课稿可以更好地提高教师理论素养和驾驭教材的能力。那么什么样的说课稿才是好的呢?下面是小编为大家整理...
日期:08-03
外科医生辞职报告15篇_外科医生辞职报告
「15篇」在现在社会,报告十分的重要,要注意报告在写作时具有一定的格式。那么什么样的报告才是有效的呢?以下是小编整理的,希望能够帮助到大家。1尊敬的院领导:您好!我是怀着十分...
日期:08-18
模拟商务谈判大赛策划书_模拟商务谈判活动策划
模拟商务谈判大赛策划书范文一.活动概况(一)活动背景及目的:商务谈判是指不同的经济实体各方为了自身的经济利益和满足对方的需要,通过沟通、协商、妥协、合作、策略等各种方式,把...
日期:08-05
创建健康促进区实施方案(创建健康社区工作实施方案)
(通用7篇)为有力保证事情或工作开展的水平质量,预先制定方案是必不可少的,方案是为某一行动所制定的具体行动实施办法细则、步骤和安排等。你知道什么样的方案才能切实地帮助到...
日期:07-27
文明过春节倡议书(春节文明过节倡议书)
600字(通用10篇)在现实社会中,倡议书在我们的视野里出现的频率越来越高,倡议书是由某一组织或社团拟定、就某事向社会提出建议或提议社会成员共同去做某事的书面文章。那么你有...
日期:09-22
大学上课迟到检讨书(大学上课旷课检讨书3000字)
实用的三篇在某件事出现差错以后,为了避免再次出现相同情况,往往被要求写检讨书来自我检讨,我们在写检讨书的时候要注意语言的得体性。写检讨书需要注意哪些问题呢?下面是小编整...
日期:08-01
年会庆典策划书_年会活动策划书
通用15篇时间过得真快,一段时间的工作已经告一段落了,我们又将续写新的诗篇,迎接我们的是新的工作内容和工作目标,是时候开始制定策划书了。策划书怎么写才合适呢?以下是小编收集...
日期:07-05